ENU 6101 – Reactor Analysis 1
3 credits, Graduate Level, Fall 2013

Course Description

(Official catalog version) Credits: 3; three 1-hour lectures. Neutron reactions, fission and criticality for nuclear reactors. Analytical and numerical calculations for reactor design and analysis.

Prerequisites

None.

Instructor

Kelly A. Jordan, Associate Professor
106 UFTR Bldg.
352-294-2106
kjordan@ufl.edu
Office hours: TBD / by appointment.

Course Meetings

Lecture: NSC 225, MW 5-6

Texts

Required Text: Nuclear Reactor Physics, 2nd Ed., Weston M. Stacey; (2009)
For our main textbook, we will use the 2nd edition of Stacey, a new graduate text which gives a modern, comprehensive presentation of reactor physics, replacing the long-regarded Duderstadt and Hamilton.
The following references will be useful for students needing additional background to the material presented in this class:


**Course Outline**

The focus of this course is an understanding of the modern *practice* of reactor physics. This entails an both an understanding of classic deterministic reactor theory and computational Monte Carlo techniques, and how they are applied to the analysis of real reactors.

This course will require some facility with programming in a high level language (Python is preferred), and the use of MCNP for radiation transport calculations. We will do some in-class overviews of these topics, but you are responsible for familiarizing yourself with these topics.

**Part 0: How do power plants do reactor physics?**

**Part 1: Classical Reactor Physics**

- Basic Nuclear Physics: fission, binding energy, neutron elastic scattering
- Neutron cross-sections
- Boltzmann Transport Equation
- Multigroup Diffusion and Reactor Theory
- Inhomogeneous Reactor Equation
- Resonance Self-shielding
- Adjoint Theory
- Perturbation theory for reactivity coefficients
- Sensitivity and Uncertainty Analysis

**Part 2: Monte Carlo and Experimental Methods**

- UFTR approach to critical
- Monte Carlo Modeling
- MC Kinetics
- Reactor Experiments
- Reactor noise measurements
- In-core flux measurements
- Code Validation

This class will have a mix of homework and three larger projects, described in Grading below.
Attendance and Class Conduct

You’re a graduate student: attendance is not considered in the grade. However, many materials in the course will not be covered in the textbook or in the notes – only in class. Some example problems and complex figures fall into this category. Students are responsible for these materials.

Homework

Homework turned in between the due date and the release of solutions will be worth 50% of their score had they been on time. Homework will not be accepted after solutions are released. Solutions are typically released within a week after the class period following the due date. There may be homework assignment for which no “late homework, half-credit” period will exist.

Grading

There will be homework assignments and three projects. Weights towards the final grade are as follows:

- 25% Homework
- 25% Project 1 - UFTR Approach to Critical
- 25% Project 2 - Developing a Monte Carlo transport code
- 25% Project 3 - Analyzing gas-cooled fast reactor experiments

Grades will be assigned according to the following scale and will be curved at the discretion of the instructor:

- 93.0%+: A
- 90.0-92.9%: A-
- 87.0-89.9%: B+
- 83.0-86.9%: B
- 80.0-82.9%: B-
- 77.0-79.9%: C+
- 73.0-76.9%: C
- 70.0-72.0%: C-
- 67.0-69.9%: D+
- 63.0-66.9%: D
- 60.0-62.9%: D-
- 59.9% and lower: E

Requests for re-grading of any course document should be submitted as a written request within one week of the graded document being returned. After one week, re-grading requests will no longer be considered.
In order to graduate, graduate students must have an overall GPA and an upper-division GPA of 3.0 or better (B or better). Note: a B- average is equivalent to a GPA of 2.67, and therefore, it does not satisfy this graduation requirement. For more information on grades and grading policies, please visit: http://gradschool.ufl.edu/catalog/current-catalog/catalog-general-regulations.html

Honesty Policy

All students admitted to the University of Florida have signed a statement of academic honesty committing themselves to be honest in all academic work and understanding that failure to comply with this commitment will result in disciplinary action. This statement is a reminder to uphold your obligation as a UF student and to be honest in all work submitted and exams taken in this course and all others.

Addendum: Any academic dishonesty, including unauthorized collaborations on projects or copying of homework, and/or cheating on exams will be reported through appropriate official channels. If this is your first documented offense at UF, you should expect to receive, at minimum, a failing grade in this course. If you have prior offenses, I will recommend suspension or expulsion from UF, as appropriate.

Accommodation for Students with Disabilities

Students requesting classroom accommodation must first register with the Dean of Students Office. That office will provide the student with documentation that he/she must provide to the course instructor when requesting accommodation.

UF Counseling Services

Resources are available on-campus for students having personal problems or lacking clear career and academic goals. The resources include:

- University Counseling Center, 301 Peabody Hall, 392-1575, Personal and Career Counseling.
- SHCC mental Health, Student Health Care Center, 392-1171, Personal and Counseling.
- Center for Sexual Assault/Abuse Recovery and Education (CARE), Student Health Care Center, 392-1161, sexual assault counseling.
- Career Resource Center, Reitz Union, 392-1601, career development assistance and counseling.
Software Use:

All faculty, staff and student of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.